373

What is in a Step

A. Pnueli, M. Shalev

Dept. of Applied Mathematics & Computer Science
The Weizmann Institute of Science
Rehovot 76100, Israel

May 1988

This paper presents a proposal for the definition of a step
in the execution of a statechart. The proposed semantics main-
tains the synchrony hypothesis, by which the system is infinitely
faster than its environment, and can always finish computing its
response before the next stimulus arrives. However, it corrects
some inconsistencies present in previous definitions, by requiring
global consistency of the step.

The research reported here has been partially supported by ESPRIT project 937 (DESCARTES)
granted to AdCad Israel. The research of the second author was done as part of her M.Sc. thesis
at the Weizmann Institute.

374

1. Introduction

The language of Statecharts has been proposed by D. Harel ([H]) as a vi-
sual language for the specification and modeling of reactive systems. While the
(graphical) syntax of the language has been firmed up quite carly, the definition
of its formal semantics proved to be more difficult than originally expected. These
difficulties may be explained as resulting from several requirements that seem to
be desirable in a specification language for reactive systems, but yet may conflict
with one another in some interpretations. Below, we list and shortly discuss each
of these basic requirements.

To illustrate the discussed points we will use a restricted subset of the stat-
echart syntax. The basic reaction of the system to external stimuli (events), are
performed by transitions. Transitionsin the system are graphically represented by
arrows connecting one state to another, and are labeled by a label which typically
has the form e/a. In such a label, the event e triggers (enables) the transition,
i.e., allows it to be taken. The optional action a is performed when the transition
is actually taken. Typically, the action has the form f!, which means that it gen-
erates the event f, or may be an assignment, assigning a value to a variable. Two
transitions may be parallel to one another (also referred to as orthogonal), which
means that they can be performed in the same step. Alternately, two transitions
may be conflicting, e.g., if they depart from the same state, and then, at most one
of them can be taken at any given step.

Synchrony Hypothesis

One of the main requirements one may wish to associate with a specification
language for reactive systems is the synchrony hypothesis. This hypothesis assumes
that the system is infinitely faster than the environment, and hence the response
to an external stimulus is always generated in the same step that the stimulus is
introduced. We may view this hypothesis as stating that the response is always
simultaneous with the stimulus. We remind the reader that a long sequence of
internal communications may be required to generate the outgoing response.

For example, we may have a set of parallel transitions with the following
labels:

toraje) tire fet ool thien/b!

An incoming stimulus represented by the event a causes the transition ¢, to be
activated and generate the event e,. In turn, the transition ¢, responds to e, by
generating e,. This chain reaction continues until the transition t, responds to en
by generating b, which may be the final response of the system. According to the
synchrony hypothesis b (and ¢, ... €,) are all generated in the same step in which

375

the event a is presented to the system.

The synchrony hypothesis is an abstraction that limits the interference that
may occur in the time period separating the stimulus and the response, and hence
provides a guaranteed response as a primitive construct. In later stages of the
development of the system, a more realistic modeling of the actual implementation
can be done by introducing explicit delay elements if necessary.

Yet, Retaining Causality

In spite of the simultaneity abstraction, we should retain the distinction be-
tween cause and effect.

Consider for example the case that no external stimulus is given, and the
system has two ready parallel transitions, with the following labels

t,:afbl t,:b/al

In principle one may consider a semantics in which both transitions are taken while
generating the events a and b. The justification for taking the transition ¢, with
the trigger a is that a is generated by the transition ¢, at the same step. Similarly,
the generation of b by ¢, justifies taking ¢,.

This is a situation we like to exclude. The principle of causality requires that
there is a clear causal ordering among the transitions taken in a step, such that no
transition t relies for its activation on events generated by transitions appearing
later than ¢ in that ordering.

Expressing Priorities

An important feature of specification formalisms for real-time and reactive
systems is the ability to assign priorities to responses.

Assume, for example, a system with two conflicting transitions with labels
tita t,:b

We may consider ¢, to be a response to the event a while ¢, is a response to the
event b. In the (probably infrequent) case that both a and b occur in the same
step, the response is chosen non-deterministically. In many cases we may want to
stipulate that, in the case both a and b occur, the response to b should have the
higher priority. In Statecharts, this is expressed by using the negation of events.
The general syntax of labels allows a triggering ezpression which is a boolean
expression over events. The labels

tiraA-b t,:b

376

ensure that if @ or b occur exclusively, then as before, ¢, or t, are taken, respectively.
However, if a and b occur together in the same step, then only ¢, is taken.

The three requirements listed above, i.e., synchrony, causality, and prioritzes,
led to the semantics defined in [HPSS].

The basic approach presented in [HPSS] is that the behavior of a statechart is
described as a sequence of steps, each step leading from one stable configuration to
the next. The environment may introduce new external events at the beginning of
each step. The response of the system to these input events is built up of a sequence
of micro-steps. The first micro-step consists of all the transitions that are triggered
by the input events. Subsequent micro-steps consist of all the transitions triggered
by the set of events containing the input events, as well as all the events generated
by previous micro-steps. Since there are only finitely many transitions that can
be taken in a step, the sequence of micro-steps always terminates when there
are no additional enabled transitions. This concludes a single step, and the set of
events generated in any of the micro-steps is defined as the events generated during
this step. It is not difficult to see that all the three requirements of synchrony,
causality and expressing priorities via negations of events, are satisfied by the
[HPSS] semantics. It also has the distinct advantage of being computationally
feasible, which implies existence of an efficient implementation.

Unfortunately, the approach presented in [HPSS] has several deficiencies. The
main ones are that it is highly operational, strongly depends on the ordering
between micro-steps, and does not possess the property of global consistency. To
illustrate the last point, consider two parallel transitions with the labels

t,:oa/bl t,:b/al

The semantics of [HPSS] constructs for this case the step {,,t,}, even when there
are no input events. This step generates the events {a,b}. We may complain
that this step is not globally consistent, because it includes both the event a
and the transition t,, whose triggering condition requires that a is not generated
during the current step. We refer to this phenomenon as global inconsistency,
since the sequence of micro-steps, consisting of {t,} first, followed by {t,}, is
locally consistent. It is justified to take ¢, in the first micro-step and ¢, in the
second micro-step, since they are both enabled at these points. It is only when we
sum the effect of the complete sequence, that the inconsistency is discovered.

Well defined programming and specification languages usually possess two
types of semantics. An operational semantics defines the behavior of a program or
a specification in terms of a sequence of simple and atomic operations. It usually
provides important guidelines for the implementor of the execution engine of such
programs or specifications (compiler or interpreter). The other type of seman-
tics is a declarative one, which bases the definition of the meaning of a program

n

on some kind of equational theory (using fixpoints for iteration and recursion),
and attempts to ignore operational details such as order of execution, etc. We
have intentionally avoided using the term denotational semantics which implies
compositionality in addition to declarativity.

The declarative semantics, being based on simpler mathematical principles,
is the one that underlies formal reasoning about programs and specifications, such
as comparing two programs for equivalence or inclusion.

A proven sign of healthy and robust understanding of the meaning of a pro-
gramming or a specification language is the posession of both an operational and
declarative semantics, which are consistent with one another. Based on this cri-
terion, our first attempt was to define a declarative semantics consistent with the
operational semantics of [HPSS]. We soon found out that one of the main requisites
for a declarative semantics is global consistency which is absent from [HPSS].

The present paper attempts to achieve the goal of assigning mutually consis-
tent operational and declarative semantics to the specification language of Stat-
echarts. For that purpose we had to impose some restrictions on the syntax of
statecharts, and somewhat modify the operational approach presented in [HPSS].

As seen below, the declarative semantics is based on fixpoints as is often the
case. However, in the case considered here, the situation is more complex because,
due to the presence of negations, the basic operator is in general non-monotonic.

Anticipating the formal development below, the basic fixpoint equation asso-
ciated with a step is

T = En(T)

In this equation, T is a set of transitions which are candidates for being taken
together in a step. The function En(T) yields the transitions which are enabled
by the events generated by the set of transitions T. We can translate each of the
requirements listed above into a condition on the solution T, which is an acceptable
set of transitions that can be jointly taken in a step.

e Synchrony Hypothesis. This requirement can be represented by the condi-
tion
En(Tg) C T,,

which states that all the transitions enabled by the events generated by T, are
already in T;. This implies that Ty is mazimal in the sense that no additional
transitions can be taken in this step.

e Causality. This is represented by the requirement of inseparability expressed
by the requirement that there exists no T' C T, such that

En(T)N(T-Ta)=¢

378

This means that if we try to stop at any subset T which is strictly contained in
T, there is always an additional enabled transition in T — T, that can be added
to T. In the usual case of monotonic operators this corresponds to minimality.

o Expressing Priorities. This is provided by allowing negations of cvents in the
triggering expressions.

e Global Consistency. This is represented by the condition
T, C En(T,),

which states that each transition in Ty is enabled on the complete set of transi-
tions Tg.

The main concerns considered in this paper are not unique to Statecharts,
and have to be faced by any language intended for the specification of reactive
systems, such as ESTEREL (see [BC], [BG]) and LUSTRE (see [BCH]). These
two languages have also adopted the principles of synchrony, causality and global
consistency. However, they avoid the complex interplay between non-determinism
and priorities, present in Statecharts, by ruling out any program giving rise to
these problems as illegal.

We should realize that this paper considers only the micro-semantics of stat-
ccharts, by defining the fine structure of a single step. Single steps can be com-
bined into an operational semantics, following the treatment of [HPSS]. We refer
the reader to [HGR], where a denotational semantics for some versions of the op-
erational semantics is considered, and to [HG] for a comparative discussion of the
different factors determining the semantics of a reactive language.

2. Syntax

In this section we present the syntax and semantics of statecharts. In addition,
we define some notations that are used in the following sections. The syntax
presented here is based on the syntax that was introduced in [HPSS] with necessary
modifications due to the special approach we adopted here to the semantics of
statecharts. The modifications provide further restrictions on the structure of the

event expressions, so that the concavity property, introduced in a following section,
will hold.

A Statechart is a structure
SC =(S,r,p,8,6,V,II,T)

where

379

o S is a set of states, r is the root state, and p, 8 and § are functions which
describe some relations between the states.

o V is a set of variables.
o Il is a set of primitive events.
e T is a set of transitions.

The detailed definitions of the structure of states and of the structure of the
transitions follow.

States and Their Structure

The set of states S represents both basic states and composite-states which
contain other states as substates. The hierarchy function p, the type function 6
and the default function §, represent the ancestry relations among states as follows.

The hierarchy function p: S — 25 defines the direct descendants (substates)
of each state. If p(x) = p(y) then it is required that z = y. There exists a unique
state r € S such that Vs € S, r & p(s). This state r is the root of the statechart.
A state s is called basic if p(s) = ¢. Otherwise it is called composite. We define
p*, pTt, the transitive closures of p, by:

pr=Jrs) =1 rs)

i>0 i>1

The type function 8 : S — {AND,XOR} is a partial function that assigns
to each state its type, and identifies it as either an or-state or an and-state. If
p(s) # ¢ and 6(s) = XOR then p(s) is a Tor decomposition of s, i.e., when the
system is in the state s it is in one and only one of its immediate substates. If
p(s) # ¢ and 6(s) = AND then p(s) is an and decomposition of s, i.e., when the
system is in the state s it is simultaneously in all of its immediate substates.

The default function § : S — 25 defines for a composite state s a set of states
which are contained in s. If z € §(s), then z € p*(s), and 6(s) is the default
set for s. The intended meaning of the default set §(s), is that if some transition
names s as its target, then on taking this transition we enter the default states
6(s), as well as s itself. The typical situation is that s is an or-state and 6(s) is a
singleton. In the case that |6(s)| > 1, a non-deterministic choice is implied. For
simplicity, we assume that |6(s)] = 1 for each or-state s.

In this paper we do not consider history symbols H which are discussed in
[HPSS]. This detail is not essential for the understanding of the approach we
present, and using the functions that were defined in [HPSS] we need only slight
modifications to add history to the syntax and the semantics considered here.

380

Terms

The set of terms 7T is defined by
1. If n € N is a numeral, then n € T.

o

If v € V is a variable, then both v, new (v) € 7.
3. If op is a k-ary operation, and t,,...,t, € T, then op (t,,... ;) €7T.

In general we allow an arbitrary number of data domains over which we allow
constants, typed variables and terms. For simplicity we consider here only the
data domains of the integers, and of the booleans, which are considered next.

The notation new (v) refers to the newly assigned value in the current step.
Thus, the test new (z) = = + 1 checks whether the value of = at the end of the
step is greater by one than its value in the beginning of the step.

Boolean Terms

The set of boolean terms B is defined by

1. true, false € B.

2. If s € Sis a state, then in (s) € B.

3. Ift,,t, €7, then (tRt,) € B for each R€ {=,>,<,#,<,2}.
4. If b,b, ,b, € B are boolean terms, then —b, b, V b,, b, A b, € B.

Boolean terms are expressions that should evaluate to truth values. The
expression 1in (s) is true if currently state s is active, i.e., the system is in state s.
A boolean term which does not contain a subterm of the form new (v) is called
an old boolean term.

Event Expressions

Event expressions are similar to boolean terms, in testing whether certain
conditions hold in the current configuration, and yielding a boolean value as a
result. However, while boolean terms are restricted to the examination of variables
(either in their old or in their new version), event expressions can also test for the
presence or absence of events.

We define the sets of positive event ezpressions ET and negative event ezpres-
sions E—. These two sets are then combined to form the set of event ezpressions

E.

Positive Event Expressions E7T

1. The null event, A € ET.

381

o

The primitive events I C Et.

If e, , e, are positive event expressions, then so are e, Ae,, and e, Ve,.
If s € S is a state, then entered(s), ezited(s) € E*.

If v € V is a variable, then assigned(v) € E*.

AR S

If e € E~ is a negative event expression, then —e € Et.

The intended meaning of the positive event expressions, are that these expres-
sions only become “more true” as we add more events to the set of events present
in the current step. This means that they can only change from L (undefined) to
T, or from F to T, but never from T to F. The expression e € II tests for the
presence of the event e in the current step. The particular case of A, tests for the
presence of the null event in the current step. By definition, the test for the null
event is always true.

By clause 3, any positive boolean combination of positive event expressions is
also positive. The special events entered(s) and ezited(s) are considered to occur
as soon as a transition, which respectively enters or exits the state s, is taken.

The event assigned(v) is caused by the execution of an action which assigns
a value to the variable v. This action also causes the term new (v) to be defined.

Negative Event Expressions

1. If e € Et is a positive event expression, then —e € E—.

2. If e;,e, € E~ are negative event expressions, then so are e, A e,, and
e, Ve,.

Negative event expressions are intended to capture those expressions that can
become “less true” as more events are generated. They can only change from L
to F or from T to F.

The expression —e tests for the absence of the event e in the current step.
Any positive boolean combination of negative events yields a negative event.

Event Expressions
1. EYUE-CE.

2. If e,,e, € E are event expressions then so are e, A e,, and ¢, [c], where ¢
is a boolean term.

The event ¢[c] is caused whenever e happens while the condition ¢ is true. It
can be viewed as the conjunction e A ¢, requiring both e and ¢ to hold.

Note that the class of event expressions is closed under conjunction but not
under disjunction or negation. This shows that an event expression is either a

382

positive expression, or a negative expression, or a conjunction of a positive and
a negative expression. Thus, €, A (—e,) is an admissible event expression, but
e, V (—e,) is not.

Actions

The set of actions A is defined inductively as follows:
1. The null action. € € A.
2. If e € Il is a primitive event, then ! is an action.

3. Ifu € V is a variable and t is an old term of compatible type, then u :=1
is an action, to which we refer as an assignment.

4. If a,,a, are actions then so is (a,,a,), provided a, and a, do not contain
assignments to the same variable.

The actions are the instantaneous responses of the system to the external
stimuli in addition to the internal change of state. They include generation of

events (2), assignment to variables (3). Actions can be combined into sets of
actions (4).

3. Orthogonal Sets and Configurations

We introduce here some notations and definitions from [HPSS] that are used
in the following.

States

e We define Basic C S to be the set of basic states, i.e., states s such that

p(s) = ¢.

o For a set of states X, the Lowest Common Ancestor of X, denoted by
lca(X) is defined to be the state x such that

(a) X Cp*a).
(b) Vs€S, X Cp*s)=z € p*s)

o Foraset of states X, the sirict Lowest Common OR-Ancestor of X, denoted
by lcat(X) is defined to be the state z satisfying

(a) X CpH(a).
(b) 6(z) =onr
(c) Vs€S [8(s)=0R, X CpH(s)) =z €pt(s)

383

e Two states ,y are orthogonal, denoted by z L y, if either z = y or their
lca is an AND state, that is, 8(lca({z,y})) = AND.

e A set of states X, is an orthogonal set if for every z,y € X, ¢ L y. Note
that the singleton set {z} is always an orthogonal set. In the more general
case, not considered here, that |§(s)|] > 1, it is required that 4(s) be an
orthogonal set.

e A set X is an orthogonal set relative to s € S if:
(a) X Cp*(s)
(b) X is an orthogonal set.
o A set X is a mazimal orthogonal set relative to s € S if:
(a) X is an orthogonal set relative to s.
(b) Vy € p*(s),y € X = X U {y} is not orthogonal.
Note that Vs € S, {s} is a maximal orthogonal set relative to s.

Upwards and Downwards Closures

Given a set of states X, we define the set X’ to be the upwards closure of X
if it is the smallest set satisfying the following conditions:

e XCX'
e The ancestor of any state in X’ is also in X', i.e., if p(s) N X' # ¢, then
se X'

We denote the upwards closure of a state set X by up(X). A set X is defined
to be upwards closed if X = up(X).

The downwards closure of a set X is defined to be the smallest set X' satisfying
the conditions:

e XCX

o For each composite and-state s € X', p(s) C X', i.e., X' contains all the

descendants of s.

e For each composite or-state s € X', §(s) € X', i.e., X' contains the default
descendant of s.

We denote the downwards closure of a state set X by down(X). A set S is
defined to be downwards closed if X = down(X).

384

Labels

The set of labels L is the set of pairs E x A. For [= (e,a) we write ¢/a.
Informally, if e/a is a label of a transition ¢, then t is triggered by e and a is
executed when t is taken.

Transitions

The set of transitions T given by a set of triples 25 % L x 25. A transition
t = (X,1,Y) consists of a source set X, a target set Y and a label I, where X and
Y are orthogonal sets of states. Informally, if [= e/a, the system is in X and e
occurs, then t is enabled and can be taken. If ¢ is taken then a is executed and
the system is then at Y. We denote the sets X and Y by source(t) and target(t)
respectively.

Configurations

A state configuration of s € § is an orthogonal set relative to s, all of
whose members are basic states.

A mazimal state configuration X of s € S is a maximal orthogonal set,
relative to s, all of whose members are basic states. In the case s is the
root r, we refer to X simply as a maximal state configuration.

A store St is a mapping from all the variables to values. The mapping can
be partial and then we say that the value of the variable is L interpreted
as being undefined.

Let Nat be the natural numbers domain and let Bool be the boolean
domain. A partial store is a function St : V. — (Nat + Bool), . A total
store is St : V — Nat + Bool.

A system configuration C = (S, St) consists of S, a maximal state config-
uration, and a total store St.

Without loss of generality, we may assume that the target set targei(t) of
each transition ¢ consists of (orthogonal) basic states. In case it is not so
originally, we can always replace ¥ by down(Y)NBasic, which will obey
the simplifying restriction without changing the bahavior of the statechart.

The initial state configuration X, is defined to be down({r}) N Basic
where 7 is the root state.

Relations Between Transitions

For a transition t € T, we define the arena of t to be the Ica® of the source
and target of +. That is if t = (X,,Y) then arena(t) = lca™ (X UY).

385

Graphically, the arena of ¢ is the lowest OR-state which fully contains the
arrow representing t.

o Two different transitions t, = (X, ,e,/a,,Y,) and t, = (X,,e,/a,,Y,) are
said to be structurally consistent if:

(a) arena(t,) L arena(t,).

(b) The set a, U a, contains at most one assignment to each variable
veV.

Otherwise, t, and ¢, are said to be structurally conflicting.
Note that every transition is structurally consistent with itself.

e A set T of transitions is said to be a structurally consistent set if Vt,,t, € T,
t, and t, are structurally consistent.

e A transition t = (X, e/a,Y) is structurally relevant to a state configuration
S,ifVz € X p*(z) NS # ¢. An equivalent statement of the same fact is
X C up(S).

4. The Evaluation Function m

We introduce here the evaluation function of terms, boolean terms, and event
expressions.

Additional Notations

Let A be a consistent set of assignments. We consider here a more general
case than the one allowed in the restricted statechart syntax. The restricted syntax
requires that the term ¢ appearing in the assignment z: =t is an old term, i.e.,
contains no subterms of the form new(y). The definition below covers the case
that t may contain new subterms.

We can associate with A a set of equations over VUV’ (where V' = {z' | z €
V}), denoted by Eq(A), by generating for each assignment a : z := ¢ an equation
eg(a) : z' := t'. The right hand side ¢’ of this equation, is obtained from ¢ by
replacing each occurrence of new(y) by y'.

Let St:V — nat + Bool be a total store, and St': V' — (Nat + Bool); , a
partial store. We say that the pair (St, St’) satisfies the set of assignments A, if
the equations Eq (A) are satisfied over the interpretation (St, St'), i.e.,

(St,St') = Eq (A).

386

This means that when we evaluate both sides of each equation z’ = t’, using the
values provided by (St, St'), they evaluate to equal values, possibly L.

We say that a set of assignments A is consistent over a store St, if there
exists some partial store St/, such that (St,St') satisfies A. For the restricted
case that all terms are old, we have that ¢ = ¢, and hence a sufficient condition
for consistency is that, for each variable z, A contains at most one assignment
assigning values to .

Given a total store St : V — Nat+ Bool, and a set of assignments A consistent
over St, we define new_store(St, A) to be the store St' : V/ — (Nat+Bool) | which
is the minimal store of that type, such that (St, St') satisfles A.

Example : Let
A={z:=5+y, y:=new(u)+1, u:=new(y)—1}
then,
EqA)={c' =5+y, ¢ =v +1, =y -1}
consider a store St such that St[y] = 0. There are many solutions to (St,St') |=
Eq(A). For example, both St/ : {': 5, ¥’ : 1, u': 0} and St] : {z’ : 5, y 2, u

1} are solutions. However, there exists only one minimal solution, which for the
above case 1s:

new_store(St, A) = St ;. - {z':5, ¢+ L, u': L}

e Let T be a set of transitions. We denote by assgn(T') the set of all assign-
ments appearing in the action part of the transitions in T. We denote by
Ev(T) the set of all events generated by actions of the transitions in T of
the form e!

We now define the evaluation function m corresponding to K = (C,T) =
(S, St,T), where C is a system configuration and T is a set of transitions. We
refer to K as an eztended configuration. An extended configuration represents an
intermediate situation, where we have already decided to take the transitions in
T, starting from C = (S, St). The set T' defines the set Ev(T') of events generated
by T, and a partial new store, generated by the assignments in essgn(T).

Evaluation of Terms

my:7T = K — Nat

e For a numeraln € N,
m[n](K) = nat(n)
i.e., the arithmetical value denoted by the numeral.
e For a variablev € V,

m{v](K) = St[v].
o For a variable v € V,

m[new(v)](K) = St'[v'],

where St' = new_store(St, assgn(T)). Note that m[new(v)](K) may yield

1.
e Iftis aterm and op is a unary algebraic operation, then

mop())(K) = op(mft])(X),

where op is the semantic operation corresponding to op.

o Ift,,t, are terms and op is a binary algebraic operation, then

mlop(t,,t,)](K) = op(m[t, }(K), m[t,](X)),

where op is the semantic operation corresponding to op.

All the arithmetic operations are assumed to be strict with respect to their

arguments.

Evaluation of Boolean Terms

mpg: B — K — Bool |
e mtrue] = T, m[false] = F.
e If s € Sisa state, then

m[in(s)[(KX) =if p*(s)N S # ¢ then T else F.

o Ift{ ¢, €7 areterms and R € {=, <, >, #,<,>} is a relation, then

m[(t; Rt,)J(K)=1if (m[t,}(K) R m[t,](K)) then T else F.

It is assumed that all relations R are strict.

388

e If b € B isa hoolean terms, then
m[-bl(K) = T (m[bJ(L)),
where for b € Bool |,

b —b
T |F
F |T
1 141

e If b ,b, € B are boolean terms, then

m[b, Ab,J(IX) = m[b,](K) A m[b,](I)

mlb, v b](K) = mfb, J(K) V m[b,}(K),
where for b, , 0, € Bool |

b, b, | b Ab, = b /Nb,
- |F F

T |1 L

T |T T

b, (b, |5, Vb, = b Vb
- T

F |1 1

F |F F

Note that the boolean operations of conjunction and disjunction are not strict.

Evaluation of Event Expressions
mpg: E— K — Bool|
o m[A}(K)=T.
e If s € Sisastate, then
m[entered(s)](I') = T iff for some t € T, s € p*(arena(t)), and
p*(s) Ntarget(t) # ¢
mlezited(s)[(K) =T iff p*(s)NS # ¢, and for some t € T,
s € pt(arena(t))

389

This definition says that a transition ¢ generates the event entered(s) if s
is a state (strictly) contained in the arena of ¢, and contains some states
in the target of . The transition ¢ generates the event ezited(s) if s is
currently on (has some basic descendants in S), and is strictly contained
in the arcna of ¢t. Thus if s is any state, and ¢t a self-loop transition,
connecting s to itself, i.e., source(t) = target(t) = {s}, then t generates
both the events entered(s) and ezited(s).

o If r € V is a variable, then

m[assigned(z)](K) = T iff there exists some assignment
[z :=t] € assgn(T).

e For e € Il a primitive event expression,

m[e](K) =T iff e € Ev(T).

e Fore,e, and e, event expressions,

mle, A e;J(K) = m[e,J(K)Aml[e,](K).

mle, V €,](K) = m[e, J(K)V m[e,](K).
m[-e](I) = Tvm[e](K).
e If cis a boolean term, then
mle[e])(K) = m[e}(K) N\ m[c}(X).

where 7, /A and V are the semantic boolean operators that were used in
the evaluation of boolean terms.

Enabling A Transition

Let X =(C,T) = (S, St,T), where C = (S, St) is a system configuration and
T is a set of transitions. Let ¢t = (X, e/a,Y) be a transition. We say that (C,T)
enables t if:

(a) tis structurally relevant to S, i.e., X C up(S).
(b) tis structurally consistent with every t' € T.
(¢) m]e)(C,T)=T.

We define En(C,T) = {t | (C,T) enables t}.

390

5. The Concavity Property

In this section we formulate the notion of concavity and show that the restric-
tions imposed on the syntax of statecharts guarantee that all the transitions are
concave. The concavity property is a property on transitions, which states that
a transition can not be enabled, disabled, and then enabled again as a result of
adding more transitions to the extended configuration. The concavity property
holds because the syntax of event expressions is restricted in a way that, once
an event expression e evaluates to T in some phase of the step construction, and
then changes to a different value at a later phase (F or 1), it can never regain the
value of T. Concavity is essential for the main result of this paper, which is the
equivalence of the operational and declarative definitions of a step, and may be
viewed as a weaker version of monotonicity.

5.1 Properties of Terms, Boolean Terms and Event Expressions

Lemma 1 : Given a term t and a set of transitions T, then if m{t](C,T) # L
then T C T = m[t)(C,T')=m[t](C, T) where m is the evaluation function defined
above.

Proof : trivial - by structural induction.

This shows that terms are monotone with respect to the argument T.

Definition : We say that an event expression e (a boolean term ¢) follows a path
7 = (by,b,,...,bn) where Vi € {1,n], b; € Bool, if there exist sets of transitions
T,T,,....,Tn such that T, C T, C ... C Ty, m[e](C, T;)=b; (m[c](C,T;)=b;),
for 2 = 1,...,n. We will represent a set of paths by a regular expression over the
set {T,F, L}.

Lemma 2 : A boolean term can only follow paths in L*T* + 1*F*,
Proof : The proof is by induction on the structure of the boolean term.
Base case :

o true passes only through paths in T*.

e false passes only through paths in F*.

o in(s), where s is a state, passes only through the paths T* + F*.

391

o If t,,t, are terms, then (¢, Rt,) for R € {=,>,<,#,<,2>} passes only
through paths in 1*T* + 1L*F*, because R is strict and by lemma 1.

Inductive step : We assume that b,b, and b, only follow paths in L*T* + L*F*.
It is trivial to show that —b also can follow only these paths. We show that the
lemma holds also for (b, V b,),(d; A b,).

There are three subcases to consider :
1. b, follows L% T, b, follows L*2 T2, and w.l.o.g. we assume that i, <1i,:
o (b, AD,) follows 1% TJ2.
e (b, Vb,) follows 1hTh,
2. b, follows L% T%, and b, follows 1% FJ2. Then,
o (b Ab,) follows L2 FJ2.
o (b, Vb,) follows L1751,
3. b, follows 19 Fh1, and b, follows 1%2FJ2, and w.lo.g. we assume that
1, <1,
o (b, Ab,) follows L1 FJ1.
e (b, Vb,) follows L2 FJ2.

Lemma 3 : A positive event expression passes only through paths in F*T*, and
a simple negative event expression passes only through paths in T*F*.

Proof : The proof is by induction on the structure of the positive and negative
event expressions.
Base case :

e The positive event expression A always follows the path T*.

e The primitiveevents e € II, and the events entered(s), ezited(s), assigned(v),
become true as soon as T} contains a transition that generates them. Since

the set T; is monotonically increasing with #, these events obviously follow
a path in F*T*.

Inductive step : We assume that the lemma holds for e, e, and e, and show that
it holds also for (e, Ve,),(e; Ae,) and —e.

o The proof for —e is trivial.

392

o In the case of positive event expressions, assume that e, passes through
Fi1T%1 | e, passes through F'2T72 and that wlo.g. 7, < ¢,. Then it
follows that
(a) (e, Ae,) passes through Fi2 T,

(b) (e, Ve,) passes through FiTh.

o In the case of negative event expressions, assume that e, passes through
T4 ¥, e, passes through T2 FJ2 and that w.lo.g. i, < 1,. Then it
follows that
(a) (e, Ae,) passes through T Fi1.

(b) (e, Ve,) passes through T2 F2.

Lemma 4 : An event expression passes only through paths in (L + F)*T*F*.

Proof : The proof is by induction on the structure of the event expression.
Base case : For the case of event expressions which are either positive or negative
event expressions, the lemma follows from lemma 3 and the obvious inclusions

F*T* C (L + F)*T*F*
T*F* C (L + F)*T*F*

Inductive step : We assume that the lemma holds for €, ¢, and e, and show that
it holds also for (e, Ae,) and e[c], where c is a boolean term. By lemma 2 and
because L*T* + L*F* C (L + F)*T*F*, it is sufficient to show that the lemma
holds for (e, Ae,).

Assume that e, passes through a path in (1 + F)1 T/1 F*, e, passes through a
path in (L + F)2 T2 F* and let i3 = mex(,,7,) and jz = min(j, + ¢,,J, +1,)-
Then

o Ifiy < j3 then (e, Ae,) passes through a path in (L + F)3Tia—iF*.
o Ifiy > j3 then (e, Ae,) passes through a path in (L + F)J3F*.

5.2 The Concavity Property

Theorem (The Concavity Property) : given a system configuration C, if T}, T,
and Ty are three sets of transitions such that T, € T, C T3, then there is no
transition ¢ such that t € En(C,T}),t ¢ En(C,T,) and t € En(C,T3).

393

Proof : Assume to the contrary that ¢ is a transition such that ¢t € En(C,T)),t &
En(C,T,), and t € En(C,T3). Let t = (X,e/a,Y), and C = (S,5t). Then
t € En(C,T,) only if one of the following holds

1. 3z € X p*(z)NS = ¢. But then, we have a contradiction to the fact that
t e En(C,T)).

2. 3t' € T, such that t and t’ are in a structural conflict. But then, because
t' € Ty it cannot be that ¢t € En(C,T3).

3. mle](C,T,) # T. But then because m[e}(C,T;) = T and m[e}(C,T3) =
T, we have that e passes through (T,F,T) or through (T, 1, T) which
contradicts lemma 4.

6. Definition of a Step

In this section we introduce two definitions of the sets of transitions that are
considered to be admissible steps from a given system configuration. The first
definition is declarative and is based on particular solutions of a fixpoint equation.
The second definition is constructive and suggests an algorithm for computing all
the possible steps. We then show that under the property of concavity, which the
syntax guarantees, the two definitions coincide.

Separable Sets

A set of transitions T is defined to be separable if there exists a subset 7¥ C T,
such that

En(C, TYN(T -T") = ¢.
A set T is called inseparable if it is not separable.

A Declarative Definition

A set of transitions T which is inseparable and satisfies the equation
T =En(C,T)

is called an admissible step of the system from configuration C.

We refer to such a set also as an inseparable solution.

394

The Yield of a Step

Let C be a configuration and T an admissible step from C. We define the
configuration following the application of the step T to the configuration C, as
follows:

Nezt: Config x 2T74"% _, Config.

Nezt((S, St),T) = (§', St
where

S = (5 -U p*(arena+(t))) U (U target(t))

teT teT

and
St' = update(St, new_store(St, assgn(T))).

Given two stores St and St/, the function update (St,St') yields a store St”
defined by

St"[v] = if St'[v] = L then St[v] else St'[v]

A Constructive Definition

The definition presented above for admissible steps is declarative. An alter-
native definition can be given by a non-deterministic procedure that builds a step
T by adding one transition at a time.

1. Initially T = 4.
2. Compare En(C,T) to T.
(a) If T = En(C,T) terminate and report success.

(b) If T C En(C,T), pick a transition t € En(C,T) — T and add it to T".
Repeat step 2.

(c) Otherwise, i.e., T € En(C,T), report failure.
Proposition : A set of transitions T is an inseparable solution to the equation
T = En(C,T) iff it can be constructed by the above procedure.
Proof : Assume that T), is an inseparable solution to the equation T, = En(C,T)).

We apply the procedure as specified, with the modification that the only new
transitions to be added to T are picked from (En(C,T) — T)NT,. We show:

395

o The procedure cannot fail.
The procedure can fail only by having T C T,, T C En(C,T), t € (En(C,T) —
T)NTp and t' € TU {t} such that ¢’ € En(C,T) but t' € En(C,T U {t}).

Consider the different reasons of why ¢ has become disabled when adding ¢
to T.

1. source(t') € up(S), but C has not changed by adding ¢ to T

2. ' is in structural conflict with some transition ¢t” in T U {t}. Since T C
En(C,T) we cannot have both ¢ and ¢ in 7. Hence one of them must be
the newly added transition ¢. But then ¢t would not have been enabled on
(C,T), contradicting t € En{(C,T) —T.

3. t' has the label e/a and while m[e](C,T) = T, m[e](C,T U {t}) # T.
Since t' € T, = En(C,T,), we have m[e](C,T,) = T, where TU {t} C T,.
This contradicts the concavity property of event expressions, when applied
to thesets TCTU {t} C Tj.

It follows that the procedure cannot fail.

e The procedure cannot stop at T C Tj.
The procedure can stop at T C Ty, only if En(C,T)N(T, —T) = ¢, contradicting
the fact that T} is inseparable.

Let T be a set obtained by the construction. We show that T' is an inseparable
solution. Let the transitions in T be ordered in a sequence t,,1t,,...,tn, according
to the order of their addition to T. Clearly, since the construction stopped at T,
we have that T satisfies

T = En(C,T).
It only remains to show that T is inseparable.

Consider any T C T. Let t; be the first transition, in the above ordering,
which belongs to T - T'. We claim that t;, € En(C,T") which leads to the fact
that En(C,T")N(T —T') # ¢. Assume to the contrary, that t;, & En(C,T’). Then
we have three sets

T, = {tn"'vtk—l}a T2=T,1 I3 =T,
such that T, C T, C T3, and yet
1. t € En(C,{t,,....tk_1})
2. t &€ En(C,T)
3. ty € En(C,T).

Claim 1 follows from the fact that the constructive algorithm picks transitions

396

to be added only if they are enabled under the current approximation. Claim 2 is
our contrary assumption. Claim 3 follows from the fact that #, € T = En(C,T).

We thus obtain a contradiction to the concavity property.

We must conclude that En(C,T')N (T —T') # ¢ for any T’ C T, and hence
T is inseparable.

7. Extending the Syntax

The syntax of event expressions, with its careful construction out of the sub-
classes of positive and negative event expression, was specially designed to guar-
antee the property of concavity. Let us consider several possible extensions of the
syntax and show that they lead to non-concave behaviors.

Examples : Assume that e, f,g € II are primitive event expressions, XY, XY
C S are pairwise orthogonal sets and v € V is a variable.

¢ Allowing disjunction of a positive and negative event expression.
The expression eV -f ¢ E. passes through the path (T, F,T) in the case
that T, = ¢, T, = {(X,g/f,Y)} and T3 = {(X,g/fLY), (X", g/e, Y}

o Allowing conditions in negative event expressions.
The expression (—e)[new(v) = 0]V ~f ¢ E passes through the path
(T, L, T)in the case that T, = ¢, T, = {(X,¢/f,Y)} and T3 = {(X,q/f,
Y)7 (X,a g/’U =0, Y,)}

o Allowing conditions in positive event expressions.
The expression ~(e[new(v) < 0]) ¢ E passes through the path (T, L, T)
in the case that T, = ¢, T, = {(X,g/e,Y)} and T3 = {(X,g/e!,Y), (X",
g/v:=0,Y")}

7.1 Extensions by Transition Duplication

It is still possible to accommodate more general event expressions. Let us
define first the most general syntax for event expressions. We define the class of
extended event ezpressions £ by

o Every event expression is an extended event expression. That is, E C €.

e If e,e, and e, are extended event expressions, then so are —e, €, V ¢,,
e, A e, and e[c], where c is a boolean term.

397

It is straightforward to see that the evaluation function m also defines evaluation
of extended event expressions over extended configurations K = (C,T).

Lemma 5 : Every extended event expression is equivalent to a disjunction of
event expressions.

Proof : Given an extended event expression, we can bring it to a disjunctive
normal form. In performing this transformation we have to manipulate expressions
involving events as well as boolean terms. Some of the rules for manipulating such
combinations are given by the following equivalences

—-efc] = —eV A[~q]
ANe =eA)X = ¢
(e; Aey)lel = e, A(e,le])
ele]Aele,] =e Aeyle, Acy]
(e, Vey)le] =efc]Ve, [c]

Using these and additional rules, we can bring every extended event expression
to the form

E,VE,V...V Ey,
Each disjunct E; in this presentation is an event expression of the form
(e, Ac.Aem A=fy A o fi)lel,

where €, ,...,€em, f,,% .., fi are either primitive events or simple events of the form
entered(s), exited(s), assigned(v).

Consider a statechart whose author wanted to have a transition ¢ consisting of
(X,e/a,Y), where e is an extended event expression. Let e have the presentation
E, VE, V...V Ey, as a disjunction of event expressions. Then we suggest to
the author of the original statechart to replace the single transition ¢ by the n
transitions

t, :(X,E, /a,Y) t,:(X,E,[a,Y) ... ta:(X,En/a,Y).

In this representation, the labels are event expressions and the overall effect is the
same. In fact, the author may still prefer to present a single transition labeled by
e, which is interpreted as the set of n transitions as shown above.

398

Another extension of the syntax we may allow is the reference to new values
of variables on the right hand side of assignment actions. Such a reference, of
the form new(v), is allowed, provided the trigger of that transition includes the
conjunct assigned(v). This conjunct ensures that the transition will be taken only
if the term new(v) is defined. Thus the following is an admissible label

e A assigned(y) A assigned(z)/z := z + new (y) + new (z)

Another extension is the inclusion of conditional actions with boolean terms con-
taining new subterms. These are actions of the form

if ¢ then a, else a,,

where c is a boolean term that may contain subterms of the form new(v) and a, , a,,
are actions. The interpretation of such conditional actions is again obtained by
transition splitting. Thus, we interpret the following transition

t:(X,ef/aU{ if c then a, elsea,},Y),
as though it was presented by the two transitions
t, 1 (X,e[c]/auU{e,},Y), and
t, : (X, e[~c}/aU {a,},Y).

This interpretation transforms any transition with conditional actions into a set
of transitions, all of whose actions are unconditional.

The previous version of the syntax, as presented in [HPSS], allowed event ex-
pressions of the form tr[c], fs[c], which are considered to occur when the boolean
term ¢ changes from false to true, or true to false, respectively. These can be ex-
pressed in terms of the events assigned(v) and references to new (v). For example,
the event tr(z = y], can be expressed as the disjunction

~assigned(z) A assigned(y)[(z # y) A (z = new (y))}V
assigned(z) A —assigned(y)[z # y) A (new (z) = y)]V
assigned(z) A assigned(y)[(z # y) A (new (z) = new (y))]
Obviously, this expression is not a standard event expression but rather an ex-

tended expression. Its interpretation calls for splitting the transition into three
copies, each labeled by one of the disjuncts.

Acknowledgements

We wish to thank Rivi Sherman for many constructive comments and iden-
tification of bugs in previous versions of the manuscript. We gratefully acknowl-
edge many enjoyable discussions with W.P. de Roever, R. Gerth, C. Huizing,

399

J. Hooman, R. Koymans and R. Kuiper, which significantly contributed to our
understanding of the tradeoffs between the various requirements expected from a
good semantics. We thank Carol Weintraub and Sarah Fliegelmann for typing the
numerous versions of the manuscript.

(BC]

[BCH]

(BG]

(H]
[HG]

[HGR]

[HPSS)

(8]

References

G. Berry, L. Cosserat — The Synchronous Programming Language ES-
TEREL and its Mathematical Semantics, Proceeding of CMU Seminar
on Concurrency, Springer Verlag, LCNS 197 (1985), 389-449.

J.-L. Bergerand, P. Caspi, N. Halbwachs— Outline of Real-Time Dataflow
Language, Proceeding of IEEE-CS Real-Time Symposium, San Diego
(1985).

G. Berry, G. Gonthier — The ESTEREL Synchronous Programming Lan-

guage: Design, Semantics, Implementation, Technical Report, Ecole Na-
tionale Superieure des Mines de Paris (1988).

D. Harel — Statecharts: A Visual Approach to Complex Systems, Science
of Computer Programming 8 (1987) 231-274.

C. Huizing, R. Gerth — On the Semantics of Reactive Systems, Eindhoven
University of Technology (1988).

C. Huizing, R. Gerth, W.P. De Roever — Modelling Statecharts in a Fully
Abstract Way, Colloquium on Algebras of Trees and Programs, Springer-
Verlag LCNS 299 (1988).

D. Harel, A. Pnueli, J.P. Schmidt, R. Sherman — On the Formal Semantics
of Statecharts, Symposium on Logic in Computer Science, (1987) 54-64.

M. Shalev — On the Operational Semantics of Statecharts, M.Sc. thesis,
Weizmann Institute (1988).

